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On the rippling of small waves: 
a harmonic nonlinear nearly resonant interaction 

By L. F. McGOLDRICK 
Department of the Geophysical Sciences, The University of Chicago 

(Received 8 April 1971) 

We show that the rippling often observed on small progressive gravity waves can 
be explained in terms of a nearly resonant harmonic nonlinear interaction. The 
resonance condition is that the phase speeds of the two waves must be nearly 
identical. The inviscid analysis is generalized to any order in a small parameter 
proportional to the wave steepness. Wave tank measurements provide experi- 
mental evidence for most of the predicted results. The phenomenon of resonant 
rippling is further shown to be not just peculiar to capillary-gravity waves, but 
in fact possible for any weakly nonlinear dispersive wave system whose disper- 
sion relation has discrete pairs of solutions nearly satisfying the resonance con- 
ditions. 

~ 

1. Introduction 
The often observed appearance of capillary waves on the forward face of a steep 

gravity wave has been the subject of several recent analyses. Longuet-Higgins 
(1963) considered the problem in which, when a progressive gravity wave 
approaches its maximum steepness and develops a sharpened crest, the surface 
tension must be at least locally important. This results in a travelling pressure 
disturbance which gives rise to a train of capillary waves ahead of the crest, or on 
the forward face. The properties of these wavelets were then determined by con- 
sidering them to beasmall perturbation on some basic flow, which was taken to be 
that due to the gravity wave itself. More recently, Crapper (1970) reconsidered 
the phenomenon by considering the capillary waves as stationary waves on 
a slowly varying (spatially) running stream, but used as the perturbation his 
e m &  nonlinear capillary wave solution (Crapper 1957). His analysis used the 
more recent method due to Whitham (1965u, b )  involving the use of an ' averaged 
Lagrangian ' . Both Longuet-Higgins and Crapper appealed to some earlier experi- 
ments of Cox (1958) for qualitative, if not quantitative, agreement with their 
respective theories. 

The success and applicability of these similar theories requires the acceptance 
of two suppositions: that the ratio of the wavelength of the disturbance to that of 
the basic flow gravity wave be very small, and second, that the capillary wave 
phase speed be identical to that of the gravity wave in order that the motion may 
be considered steady in a uniformly translating co-ordinate system. Under these 
conditions (in particular, the former) their analyses doubtless are accurate, and 
we can have no quarrel with the results. 
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On the other hand, both authors agree that it is at  best marginal to use the 
observations of Cox for verification. For the frequencies of the waves in his 
experiments ( N 6.6 cls), there is an appreciable effect of surface tension on the 
‘gravity wave’ and further, the ratio of wavelengths is not as small as one would 
ideally want. It is desirable to investigate this situation for a more appropriate 
gravity wave (longer), and accordingly a laboratory study was begun. Unfortu- 
nately, any results relevant to the original intent of the investigation were 
quickly seen to be nearly impossible to obtain because of the limited size of the 
experimental facilities and other problems. The length of the wave tank forced 
me to use fairly short ‘gravity’ waves which in fact are influenced more or less 
by surface tension. 

Some preliminary measurements involving the rippling on waves with 
fundamental frequencies in the range of 5-7c/s provided some rather sur- 
prising facts, the details of which will be apparent in subsequent sections of this 
paper. Briefly, if a wave maker is driven with purely sinusoidal motion at some 
fairly small amplitude, progressive waves having the wavelength appropriate 
to that driving frequency appear in the immediate vicinity of the source as fairly 
clean nearly sinusoidal waves. As they progress away from the source, ripples 
begin to form, and can be seen (by eye) to grow in amplitude as they progress. 
It is not too difficult (though tedious) with proper electronics and technique to 
measure the phase speed of the fundamental and (by judicious filtering) the 
phase speed of the ripples. The speeds are almost always different! The wave 
train is not spatially steady. At any fixed distance from the source, however, 
the wave form is temporally steady, and a measurement of the amplitude spectrum 
of the wave form seen at  a fixed point was observed to contain only harmonics 
of the wave maker frequency. Finally, the ripples are not confined to the forward 
face of the longer wave, but in fact (see figure 1, plate 1) are ubiquitous. 

That these observations are not a t  all consistent with the above-mentioned 
theories is of no consequence. They should not be. Indeed, what is needed for 
their explanation is a theory in which those assumptions of steadiness (spatially) 
and wavelength scale separation are abandoned. What we wish to investigate 
here, then, is the spatial modulation, or wrinkling, of a single Fourier progressive 
wave mode by a nonlinear harmonic interaction. 

It will become apparent in the following parts of this paper that the pheno- 
menon of rippling is not just a peculiarity of capillary-gravity waves, but much 
more general.? It will occur for any weakly nonlinear dispersive wave system for 
which the dispersion relation is such that the wavenumber is a double-valued 
function ofthe phase speed, or for which at discrete frequencies) if the dispersion 
relation is w = f(k), then nw = f(nk) for some finite range of integers n, that is, 
the medium must admit of free waves and their free nth harmonic that can travel 
at  identical phase speeds. That this is true for capillary-gravity waveswas pointed 

t Drazin ( 1970) investigated some properties of nonlinear Kelvin-Helmholtz interfacial 
waves. That harmonic resonances of the kind described in the present paper are possible in 
his problem is clear from the formof his dispersion relation, as well as from his paragraph on 
page 326, following equation (38),  which of course is the condition for second harmonic 
resonance. 



The rippling of small waves 727 

out by Wilton (1915), and subsequent analysis and experiment have been per- 
formed for n = 2 (second harmonic resonance) by McGoldrick ( 1 9 7 0 ~ )  6 ) .  

It is well known that the dynamical equations governing the propagation of 
capillary-gravity waves are weakly nonlinear, and the algebraic details of carry- 
ing out their expansion by perturbation methods to sufficient accuracy antici- 
pated here are prohibitively difficult. For this reason, we shall present in $ 2  a 
model equation having nearly identical properties: weakly nonlinear, and having 
a simple dispersion relation admitting of discrete harmonic resonances. We shall 
then in the next section solve the model equation (subject to initial conditions 
appropriate to the anticipated experiment) using a straightforward perturbation 
scheme with multiple space scales. The results of the analysis will show clearly 
that the rippling may be interpreted as a nonlinear resonant interaction between 
a fundamental wave mode and one of its temporal (but not necessarily spatial) 
harmonics. 

It is not our intention to solve the water wave equations. We wish only to use 
some of the observed properties of these interactions for partial verification of the 
solutions of the analogous model equation. Accordingly, in $4, we turn to the 
wave tank and present some experimental measurements of ripple formation that 
confirm qualitatively some of the predictions of the theoretical development of 
9 3. 

Kim & Hanratty (1971) have presented some experimental results that are 
similar to some of those that we shall present here. They have shown that an 
initially sinusoidal wave propagating in shallow water (0.65 cm deep) develops 
seven additional crests by the time ib  has progressed about 31 cm from its 
wave maker source, which indicates a growth of an eighth harmonic component 
with distance. They also show that at different (but still small) depths, it is pos- 
sible to create third and fourth harmonic distortion. They interpret the latter 
resonances as the result of a quadratic interaction rather than a cubic or quartic 
interaction like those to be described in this paper. We shall return to this point 
in $4. 

Finally, in the concluding section, we shall, among further comments, attempt 
to place the theory and experiment of this paper in proper perspective to the 
theories of Longuet-Higgins and Crapper. 

2. Preliminary theoretical considerations 
The equations governing the propagation of surface waves under the combined 

influence of gravity and surface tension are well known. If aprime is used to denote 
dimensional variables, then everything may be made dimensionless according 
to the scheme c = c / a ,  $ = $‘lac, x = K X ’ ,  t = Qt‘, k = k ‘ / K ,  w = w’/Q, where 
a, c, k and Q are typical dimensional amplitude, phase speed, wavenumber and 
frequency. With c the departure of the free-surface elevation from equilibrium 
and $’ the velocity potential for the motion, the exact dimensionless kinematical 
boundary condition at the free surface becomes 
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where E = aK.  The dynamical boundary condition is obtained from the sub- 
stantial derivative of the Bernoulli equation evaluated at  the free surface, which 
is exactly 

$tt+h$z-,uDF(~)/Dt+s(V$.V$)t+&2[V$.V(V$.V$)] = 0 at z = €5. (2.2) 

In (2.2), h = gK/Q2,  ,u = y ~ ~ / f i ~ ,  D/Dt = a/at + EV#. V, y is the surface tension 
coefficient divided by the density, F(5)  is the sum of the principal curvatures of 
the surface, and the atmospheric pressure is as usual taken to be constant. Equa- 
tions (2.1) and (2.2) together with Laplace's equation and the condition that V# 
vanishes as x + - co govern the problem exactly. 

It is usual in problems of this sort to expand the dependent variables in series 
in the parameter E such as 

where 5'") and $(n) are O( 1) quantities. Without performing any of the details, 
two essential points become obvious. First, the problem of determining q5 is 
weakly nonlinear. That is, quadratic, cubic, ... terms in $ always appear with 
coefficients E ,  e2, . . . , respectively, as is well known. Further, the linearized prob- 
lem (E: -+ 0 )  becomes, to 0 ( 1 ) ,  

where we have chosen x as the direction of propagation of a wave of the form 
Q1) = Re { A  ei(kz-wt)}. Equations (2.4) then easily yield the well-known dispersion 
relation which, in dimensional terms, is 

and the phase speed of the wave is given by 

c' = f(k')/k' = (g/k' + yk')&. 
The second essential point is that for any phase speed greaber than the minimum 
value allowed by (2.6) (i.e. cL = (4gy)a) the dispersion relation (2.6) allows two 
wavenumbers as solutions. In particular, there exists a sequence of wavenumbers 
for which harmonically related waves have identical phase speeds. A fundamental 
free wave with wavenumbers k' = (g/ny)t and its nth harmonic free wave with 
wavenumber nk' = (ng/y)a propagate at  identical phase speeds, 

c' = (ngy)* (I  + I/n)t for n = 2, 3 ,4 ,  ... . 
Thab this situation admits of singularities in the nonlinear problem has been 
pointed out by Wilton (1915). The interpretation of the n = 2 singularity, which 
arises from the quadratically nonlinear terms (at O ( E ) ) ,  has been shown by 
McGoldrick (1970a, b )  to be a special case of resonant interaction. It is clear 
that the higher order singularities can also be interpreted as nth harmonic 
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resonances, and for the resolution of the problem, the usual perturbation 
analysis must be carried to 0(en-l) .  For capillary-gravity waves, at least, the 
analysis becomes progressively (and prohibitively) more tedious a t  successive 
orders. Admitting to a strong aversion to unnecessarily complicated algebraic 
manipulations, we shall present with no further apology a simple model 
possessing both of the essential features and investigate in detail not jusb the 
resonant solutions, but, more to the point of the experimental observations to 
be presented below, the properties of the interaction in the neighbourhood of 
resonance will be clarified. 

Let us consider, then, the following one-dimensional model which admits of 
dispersive plane wave solutions : 

(2.7) Utt - Uxx + u + ~ U z x x x  = 3su2 + p u 3  + . . . , 

9 { u }  = € N { U ,  s}, 
which may be simplified for later reference by writing 

where 2' is a linear differential operator in x and t ,  X i s  a nonlinear operator, and 
0 < B < 1 is an arbitrary small parameter. The constants in (2.7) have been chosen 
for subsequent algebraical simplicity. If we now write u = u(l) + e d 2 )  + sd3) + . . . , 
where u(n) = O(l) ,  then substitution into (2.7) yields the following sequence of 

problems: O(1): L?{U'l'} = 0, 

.................................... 
which is as usual solved successively. Choosing u(l) = A eiS +A* e-28 for the O( 1) 
solution, with A a constant amplitude and 6' = kx - wt the phase, then the O( 1) 
equations yield solely the simple dispersion relation 

(2.9) 
This allows harmonically related free waves to travel at the same phase speed for 
the sequence of discrete frequencies and corresponding wavenumbers which are 
solutions of nu = f (nk), namely 

Using the solution for 0, then the particular solution of the O(s)  problem of 

w = f ( k )  = 1 + *k2. 

w, = 1 + l/n, k, = (2/n)B. (2.10) 

(2.8) is 
(2.11) 

which is bounded unless (2.10) with n = 2 is satisfied. This of course is the familiar 
second harmonic resonance in which a fundamental and its second harmonic 
are both free waves. 

To be more precise, consider the coefficient of the forced oscillations in (2.1 1). 
Suppose the wavenumber (whence the frequency) is close to resonance for n = 2,  
and with w, = 4, k, = I,  write k = k,(l + S), where 6 is a small number. Then to  
lowest order in 8, the solution for u correct to O ( E )  is 

ZL = u(') + €2&(2) 

(2.12) 
€ = A ,iS + + &AA* _ _  ( A 2 e 2 i S  + e-2io). 
4s 
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If the amount of 'detuning from resonance', characterized by 6, is such that 
6 = O(e), then the forced harmonic solutions are O( l),  contrary to the spirit of the 
original expansion. This suggests +hat, near resonance, the second harmonic 
terms should be considered as part of the O(1) term in the expansion for u. 
Some care must be exercised on this point, because the terms in curly brackets of 
(2.12) are not free waves for 6 + 0;  they are not exact solutions of the O(1) 
equations. They are, however, arbitrarily close to free solutions, and proper 
allowance for this small discrepancy will be explained in the next section. 

If the frequency is not close to second harmonic resonance, and d2) given by 
(2.11) isO(l) ,  thenthe O(s2)problemof (2.8) canbesolved, with particular integral 
containing, among other things, a forced third harmonic component, or (with 
M, an O( 1) constant) 

(2.13) 

which is bounded unless the frequency is sufficiently close to the third harmonic 
resonant frequency w, = +, with k, = ($)*. If the actual wavenumber is 
k = k3(1 +a), 6 again small, then using (2.13) in the expansion for u to O(e2),  we 
have 

3.5 {A2e2i0+A"2e-2i0}+ &AA* = Aeie+A*e-io+ p(  2k) - (2W)Z  

M €2 

6 
+ 2 {A3e3<0 + A *3e-3iB) + O($) (2.14) 

with M, another constant. Here again, if the detuning 6 is of order €2 then the 
forced third harmonic terms are O( I), and should be absorbed in the O( 1) solution 
dl), again remembering that the forced third harmonics are not quite, but suffi- 
ciently close to, free waves. 

The pattern that emerges is clear, and can easily be generalized. If the actual 
frequency and wavenumber differ from an nth harmonic pair given by (2.10) 
according to 

Iw-w,I = O(sn-l), Ik-k,l = O(P-1) (n = 2,3 ,  ...), (2.15) 

then the nth harmonic forced wave will be O( l), and should be absorbed in the 
O( 1) term in the expansion, ucl). As we shall see below, under these conditions, the 
precise nature of the O( 1) solution will not emerge until the sequence of problems 
(2.8) is completed to O ( S , - ~ ) .  

3. The analysis near resonance 

In order to resolve the difficulties arising near resonance from the straightforward 
perturbation expansion of the preceding section, we shall make liberal use of the 
method of multiple scales. Formally, assume that the complex amplitudes of the 
waves depend on a sequence of slow time scales given by 

3. I .  Xecond harmonic near-resonance 

Tl = E t ,  T, = E2t, ..., T, = Pt ,  

and a sequence of long space scales X ,  = E X ,  X ,  = e2x,. . . . Then time derivatives 
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slat are replaced by the sequence of derivatives slat + d/aTl + E2a/aT2 + . . . and 
spatial derivatives alax become alax + &/ax, + e2a/aX2 + . . . . Then the linear 
operator 9 of (2.7) becomes upon expansion 

y"(u> -+ Utt - u x x  + u + auxxxx 
+ +%T1 - Z U x X ,  + uzxxxlu> 
+ "{(2UtT2 - 2 u x x ,  + ~ x x x x 2 )  

+ (UT1 T I -  uxl x1 + @XZXl XJ> + - * * - (3.1) 

Then with u = dl) + s d 2 )  + e2d3)  + . . ., the following sequence of problems arises to 

The linear problem is unaffected by this expansion, and if we choose 

u(l) = A(T,, . . ., X,, . . .) eis + [*I, 
the sole result of this problem is the dispersion relation (2.9). To this order, the 
slow time and long space scale nature of A is indeterminate. 

If the frequency is not near a solution of the resonance condition 2w = f ( Z k ) ,  
then the particular integral of the O(s)  equation is (2.11) again, but in addition, 
the terms in parentheses, which must sum to zero in order that d2) be bounded, 
yield 

with general solution A(X, ,  T,) = 9 ( X l  - UT,). U is the group velocity 

AT1 + UAxl = 0, 

awlak = k. 

(3.3) 

That is, to this order, in a frame of reference translating with the group velocity 
the local amplitude is a constant. 

If the frequency is near to that of second-harmonic resonance, the results of 
the last section suggest that the O( 1) solution be modified to allow the possibility 
of an O( 1) near-second harmonic constituent. The particular form of the modifica- 
tion is not immediately apparent, however, and we must turn to preliminary ex- 
perimental observations for some enlightenment. If in a wave tank a wave maker 
is made to oscillate with constant amplitude with a single frequency near 
the resonant frequency, then after the initial disturbancet has propagated 

t The problem of the initial disturbance is of course unsteady, and the time derivatives 
of any order are not negligible. Inclusion of these derivatives at  any appropriate order in the 
problem will easily yield amplitude equations similar to those we shall produce below, (3. lo), 
(3.25), (3.41), (3.43), etc., but in which theleft-handsidesmust be replaced byAT,+ U A A ~ ,  
and BT*+ U B B ~ , ,  respectively. It is easy to generate these equations but difficult to inte- 
grate them from whatever initial data is prescribed, say A and B for all T, at a wave maker, 
X ,  = 0. We are still working on this problem and shall return to it at a later date. 
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sufficiently far, the wave form in the vicinity of the wave maker is seen to be 
steady in time, but variable or modulated in space. If a wave-measuring probe is 
placed in a fixed position, then the amplitude of the waves is not observed to 
change with time, and Fourier analysis of the steady wave form with sharp 
electronic filters indicates that the amplitude spectrum consists solely of the 
fundamental (wave maker) frequency and its discrete (but exact) temporal har- 
monics. Since these conditions obtain in all of the experiments to be reported 
in the next section, we shall make the assumption for the remainder of this 
paper that the amplitudes are not functions of any of the slow time scales, or 
aA/BT, = 0, and investigate the details of the steady spatially modulated solu- 
tions of (3 .2 ) .  

For second harmonic near-resonance, then, we choose the O( 1 )  wave field as 

= A(X,)  ei8i + $B(X,) eiDa + [*I, (3 .4 )  

with phase functions 8, = k(w)  x - wt and 8, = k(2w)  x - 2wt. The wavenumbers 
k(o) and k ( 2 w )  must be determined from the inversion of the dispersion relation 
(2 .9)  in order that (3.4) satisfies the O(1) problem of (3 .2 )  exactly, ensuring that 
A and B represent free waves. For frequencies w close to w2( = #), then, writing 
w = w2( 1 + 6) with 6 asmallnumber, it is a simplematter to show that to the lowest 
order in 6 the wavenumbers in ( 3 . 4 )  must be 

k ( w )  = k,(lfc,6/Ua), k(2w)  = 2kz( l+c26/UB) ,  (3 .5 )  

where c2 is the phase speed w2/k, evaluated a t  resonance, U, is the group speed 
dw/dkI,, evaluated at the resonant frequency, and U, is the group speeddo/dkI,,,, 
evaluated at twice the resonant frequency. Note that even though the frequencies 
are harmonic, the wavenumbers are not, but in fact 

which is harmonic only at  exact resonance, 6 = 0. 

get 
Substituting the free wave solution ( 3 . 4 )  into the O(s)  equations of (3 .2 ) ,  we 

2{ (2) - 3(A2eZi01 + A*2 e-2iBl + 2 A A *  + $BZe2i02 + 1B*2e-ZiOz 1 -  4 

1 + +BB* + AB eW1+Sz) + AB* ei(el-Q + A *B ei(O,-Ol) + A *B* e - i ( O l + Q  

+ BiwU, Axleiel  - 2iwU A* X l  e-isi 

+- 2iwUBBx1eie2 - 2iwUBRxle-i'3z. (3 .7 )  

Now cancellation of terms on the right side of ( 3 . 7 )  that correspond to (nearly) 
free waves will lead to a bounded particular integral for a(,). Now i8, and i8, are 
themselves free wave phase functions; 2i8, and i(8, - 8,) are nearly so, since 

223, = ie, + ~ i k , ~ ,  ( ~ 1 1 -  ui;l) 6x, 
i(8, - 8,) = i8, - 2ik,c, (U21- UEl) ax. (3.8) 

If, as suggested by (2 .15 ) ,  the detuning 6 = O(e) ,  then with 

2k,c,( U i l  - Uil )  6 = N ~ c ,  
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the phase functions (3.8) become 

(3.9) 

or the phases differ from free waves only on the long space scale. Clearly, then, 
the removal of the secular behaviour from (3.7) requires that 

I 2ie, = ie2+iN2xl,  

i ( ~ ,  - el) = iol - i~,x,, 

(3.10) 

These equations with N2 set equal to zero are, of course, the amplitude equations 
determined previously by McGoldrick (1970b) for exact second harmonic reson- 
ance. We shall now investigate (3.10) and specify initial conditions at X ,  = 0 
appropriate to the experiments of the next section. 

Letting W = iA"2Be-iNzXi (3.11) 

then (3.10) gives with some manipulation 

(3.12) 
d d 

-(UAAA*) = W +  W* = --(U,BB*) = 2Re(W), 
dX1 dX1 

which has the obvious integral 

2 = UA(Az-AA*) = U,(BB*-&), (3.13) 

with UAAA*+UBBB* = E ( =  UaA2+UgB2). (3.14) 

Equation (3.14) is an 'energy-like ' integral, E is a constant, and A and B are the 
moduli of the initial amplitudes of the two modes at  X ,  = 0, say. Note that the 
energy integral is independent of the detuning N2.  Another, less obvious, inde- 
pendent integral can be constructed from i( W - W*). A little algebra shows that 

(3.15) 

using (3.12) and (3.13). Integrating (3.15), we get 

- i (W-  W*) = N 2 Z - 2 L  = 2Im(W), (3.16) 

with L a constant of integration. Now since 2 Re ( W )  = - dZ/dX,, 

WW* = Re2(W)+Im2(W) 

together with (3.16) easily yields 

(3.17) 

which may be integrated explicitly in terms of elliptic functions,t and the en- 
suing details of the propagation depend crucially on the initial conditions Â  and 
I? as well as the constant L, which can be shown to involve the initial relative 
phase difference between the interacting components. 

were first found by Bretherton (1964) in a similar context. 
t Integrals of the form of (3.14) and (3.16) and the subsequent reduction to quadrature 
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FIGURE 2. Second harmonic near-resonant response function, in terms of 
the detuning N,.  

For the initial conditions obtaining in the experiments, we choose 3 = 0,  
corresponding to the generation of a pure fundamental mode a t  the wave maker. 
ThenE = UAA2, andwith UA = 1, UB = 2, (3.17) becomes 

(g)’ = 4 { i (E  -2),2 - ( L  - iN ,  Z),}. (3.18) 

Further, at X ,  = 0, the initial conditions together with (3.13) give Z(0) = 0, 
which in (3.18) implies (dZ/dX, )~r l=,  = - 4L2, which in turn implies that, cor- 
responding to this choice of initial conditions, the constant L must be zero in order 
for Z to be real. Then (3.18) becomes 

( d Z / d X J 2  = Z{2(E-Z)’ -  NZZ)  = g2(Z) .  (3.19) 

The nature of the propagation is clear from (3.19). The square of the modulus 
of the second harmonic, proportional to 2, oscillates periodically between the 
two roots of the cubic 99,(2) = 0 between which G,(Z)  > 0. One root is zero, of 
course, corresponding to XI = 0, andof the remaining two, the smaller denotedby 

z,,, = E [ l - g ( ( l + g ) + - l ) ] .  (3.20) 

(The remaining root is greater than E,  which is physically unrealistic via (3.14).) 
Z,,, is dependent on N, ,  the amount of detuning, and the interpretation of the 
effects of detuning fromresonance can best be seen in terms of aresonant response 
curve. If we call B(N,) the maximum amplitude attained by the second harmonic 
during the propagation (B = (ZmaX/UB)*), then figure 2 represents such a response 
curve. The ordinate represents the ratio of the maximum amplitude attained by 
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the second harmonic off resonance to that which would be attained exactly on 
resonance, as a function of the amount of detuning, N,. For large amounts of 
detuning, far from resonance, the response decreases as N c l .  Recalling that 3, is 
proportional to 8 times the departure of the frequency from resonance, we have 
demonstrated that thereis a band of frequencies with bandwidth of order e about 
the resonant frequency w2 for which the resonance mechanism is effective. The 
most noteworthy feature is that, according to figure 2, the maximum amount of 
energy transferred from the fundamental component into the second harmonic is 
decreased as the resonance is detuned. Finally, the response at  resonance for these 
initial conditions is not periodic. For Nz = 0,Z = E is a double root of g2(2) = 0,  
and (3.19) integrates directly in terms of hyperbolic functions, giving 

(3.21) 

The details of the exact resonance solution were the subject of an extensive 
experimental confirmation (McGoldrick 1970a), and need not be further con- 
sidered here. Equation (3.21) represents the only non-periodic solution of (3.10) 
with the initial conditions used here; all near-resonant solutions are periodic. 
We shall contrast this fact with the conclusions that shall be drawn concerning 
higher harmonic resonances, to which we now turn. 

Z(X,) = E tanh2 (EkXJJ2).  

3.2. Third harmonic near resonance 

The problem of third harmonic resonance is somewhat; more tedious than the 
preceding. The analysis must be carried to O(e2),  and many of the algebraic 
details will not be inflicted on the reader. Third harmonic resonance will occur 
when the frequency of a fundamental mode satisfies 3w = f(3k), to which corre- 
spond w3 = Q and k, = (#)*. For frequencies in the neighbourhood of w3, as sug- 
gested by (2.14) and (2.15), we shall choose for the O(1) solution? of (3.2) the sum 
of the two oscillations u(i) = A eiel + +Beis, + [*I, (3.22) 

in which the phase functions 8, = k ( w ) x  - wt and 8, = k(30)x - 3wt representing 
free waves, and the frequency w is written as w = w3( 1 + 6). Then the dispersion 
relation gives for the wavenumbers 

(3.23) 

to lowest order in 6, with c3 and U, the phase and group speeds evaluated at  w3 and 
U, the group speed evaluated at  3w3. 

The O(e)  problem for d2)yields two pieces of information. First, A,, = BX1 = 0: 
that is, there is no variation of the amplitudes on the first long space scale. Then 
a particular integral of 9{d2)} = 3u(1)2 is found to be 

u(2) = { - gAze2isl + ~LB2~2if33 + &AB ei(e,+es) - sAB* ei(el-@3)} 
315 5 

+(*)+6AA*++BB*, (3.24) 

no constituents of which are close to free waves, but bounded forced modes. 

f We offer a small apology for the similarity of notation with the preceding second har- 
monic analysis. Rather than proliferate symbols, we have chosen a uniform notation, and 
hope that any confusion may not arise. Wherever that possibility may appear, we shall sub- 
script: cf. 8, and 8,. 
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Turning now to the O(e2) problem 9{d3)}, we shall examine the right-hand side 
term by term. The products ~ U ( ~ ) U ( ~ )  and /3u(1)3 contain both free waves and waves 
close to free waves, as well as forced waves. The first and last groups of terms in 
parentheses vanish by virtue of the results of the O ( S )  problem. The second group 
in parentheses contains free waves whose amplitudes are differentiated on the 
X,-scale. As usual, inorder that u(3) be bounded, the free wavesmust beeliminated 
from the inhomogeneous part of the equation. Omitting the straightforward 
details, the equations for the modulation of the amplitudes become 

(3.25) 
UAAx, = i[c,,AA* +c,,BB*] A+id3A*2Be-iNsXa,) 
UBBx, = ~ [ C ~ , A A * + ~ ~ , B B * ] B + ~ ~ , A ~ ~ + ~ ~ ~ ~ ~ .  

In arriving a t  the form of the complex exponentials in the last terms of (3.25), 
we have made use of the suggestion of (2.14) and (2.15): viz. the actual detuning 
S is of order for this problem. Explicitly, as in (3.8) and (3.9) 

3k3c3(U21- Ug1) 6x + N 3 X 2  

when S = 0(c2), defining the detuning coefficient N3. The real constants cii in 
(3.25) are 

cg1 = 3c1, = 2(/3 +%'), 
and the interaction coefficient d3 is 

(3.26) 

a 3  = *( /3-5+).  

The O($) amplitude equations (3.25) possess two independent integrals with 

W = iA*ZBe-iNsXz (3.27) 

subsequent reduction to quadrature as in the previous case. If we let 

then, with some manipulation, 

(UBBB") = 2d3Re(W), (3.28) 
d d 

-(U,AA*) = d3(W+W*) = -- 
dX2 d X ,  

which has the integral 

z = U,(&-AA*) = u,(BB*-@, (3.29) 

with UAAA*+UBBB* = E ( =  UAA^2+UBB2). (3.30) 

Note bhat this integral is identical to that of the second harmonic resonance 
problem, and involves neither the constants cii, the interaction constant d,, nor 
thedetuning constant N3. For the second integral, if weconsider Im ( W ) ,  thenafter 
a considerable amount of reduction, we get 

(3.31) 

where the real constants c1 and cz are 

1 
Integrating (3.31), Im( W) = -{(N3 + 5,) Z + <,Z2 + 2L), (3.33) 

2d3 
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where the constant of integration L depends on the initial conditions. Then from 
(3.28)) (3.29) and (3.33) we obtain a single differential equation for 2: 

which again may be integrated in terms of elliptic functions. 
In  this case, a choice of initial conditions appropriate to the experiments 

simplifies (3.34) a bit. With B(0) = 0, then UaA2 = E and W(0)  = 0, and 
Z(0) = 0,  so from the integral (3.33) L = 0 corresponds to these initial conditions. 
Then (3.34) becomes, using U, = +UB = (g);,  

(g-, = 2{3d~(E-2)3-2(N3+4-1+4-22)2)  = % 3 ( 2 ) ,  (3.35) 

with t1 = &E(9cl,- 3c1,) and t2 = &(18c12-cz2- 27c11). The solutions of (3.35) 
are oscillatory, with Z oscillating periodically between the two smallest roots of 
the quartic g3(2) = 0. One root is of course zero; the others may be obtained by 
solving the reduced cubic equation, which is more tedious than enlightening. 
Before investigating the upper bound of the amplitudes during the modulation, 
we shall investigate two special cases of particular importance. 

The interaction coefficient d3 depends on p, the as yet unspecified coefficient 
of the cubic nonlinearity in the original model problem (2.7). For the special 
case in which p = y, the interaction coefficient d3 vanishes, and the amplitude 

(3.36) 

If we write the complex amplitudes in terms of their real amplitudes and real 
phases as A = aei'kA, B = bei'kB 

then (3.26) become ax, = 0,  bx2 = 0, 

uA(@A)X,  = 'llU2 + '12 b2) 

UB(@B)X, = c21a2 + C 2 2 b 2 ,  

(3.37) 

which have the immediate integrals for the amplitudes a = constant, b = con- 
stant (cf. (3.28) with d, = 0) ,  and for the phases 

(3.38) 

If we return these to (3.22), then for this non-resonant special case 

with amplitudes A and B constant. The slowly varying phases $A and @ B  

represent O(e2) Poincark-type wavenumber shifts. For single gravity waves, these 
are of course the well-known Stokes corrections to the dispersion relation. That 
is, the coefficients cI1 and c2, represent the self-interaction of waves to O(e2).  The 
coefficients cgl and c12 on the other hand represent the lesser-known mutual 

47 F L M  52 
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- 51 
FIGURE 3. Typical third harmonic near-resonant response functions for several 

choices of the mutual and self-interaction coefficients. 

(but non-resonant) finite amplitude corrections first found for water waves by 
Longuet-Higgins & Phillips (1962) by a less general method than that used here. 
All of these corrections arise from cubic interaction theory, and do not appear in 
the O(s) problem considered earlier in this section. 

For d, + 0,  there is one more special case that should be investigated. Recalling 
that in the second harmonic problem the solution is monotonic for exact reson- 
ance, it is natural to seek similarity behaved solutions of (3.35). That is we wish 
to find a solution for which the energy of the fundamental mode can be trans- 
ferred entirely and monotonically into the third harmonic, a situation representa- 
tive of the maximum possible amount of energy transfer. This can be seen to be 
the case only if Z = E is a multiple root of 3,(Z) = 0. If E is a root a t  all, we must 
have N3 = - t1 - tz E.  If E is a double root, then it is easy to obtain the remaining 
roots, which in ascending order are 

Z = O ,  E l+A , E,  E ,  ( 
and the behaviour is still oscillatory. It is only for tz = 0 (in which case Z = E 
is a triple root) and N3 = -El that the solution is monotonic. Simple algebra 
shows that in order for this to occur at all, the coefficient of the cubic nonlinearity 
in (2 .7 )  must be 

The solution of the amplitude equations for this case is 

p = -2oo24/21705. 

8 

Z ( X , )  = E3Xg( 1 + E2Xg)-1. (3.40) 

It is remarkable that this ‘maximum energy transfer ’ solution does not occur 
exactly a t  the frequency predicted by the resonance condition 313 = f ( 3 k ) ,  but 
is in fact slightly detuned by amount N3 = - cl, which depends on the values of 
the self and mutual interaction coefficients ci j .  But this is not surprising, since 
these effects affect the dispersion relation itself to this order. 
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Again we may summarize the essential features of the interaction to this 
order in terms of aresponse function diagram, figure 3. We have plotted the maxi- 
mum value attained by 2 during the interaction as a function of the amount of 
detuning, N,. The upper curve is drawn for the special case 6, = 0,  for which the 
solutions are periodic with the sole exception of the slightly detuned degenerate 
monotonic case, (3.40), which, of course, has the maximum response. For t2 =t= 0, 
of which the lower curve is typical, all solutions are oscillatory, the relative maxi- 
mum response must be less than that above, and occurs at a slightly detuned 
frequency. We shall see evidence of this influence of self and mutual interaction 
in the experiments described shortly.? 

3.3. Higher order near-resonances 

Higher order resonances may be analysed similarly. Even in the model problem 
the algebra is daunting. Nonetheless, we have learned enough of the essential 
features of these kinds of interactions to generalize a bit. Briefly considering 
fourth harmonic near-resonance, if we choose d1) = Aeiel + $Beie, + [*I, then with 
the usual assumption o = 04(l+ 6) and usual choice of wavenumbers to  satisfy 
the O(1) problem, we get in turn: 

O(e): amplitudes not dependent on XI, then particular integral for u@). 

O(e2):  Poincar6 wavenumber shifts of O(e2) from equations like (3.36) (non- 
resonant), and then a particular (bounded) integral for d3). 

O(e3) amplitude equations on the third long space scale X ,  of the form 

where we have assumed 6 = O(e3) and 

4k4c4( ui1- Ug1) 6 = N463. 

Then (3.41) are reduced in the usual way to 

(g)’= 4 , / 2 d i ( E - 2 ) 4 2 - N i Z 2  = g4(2), 

(3.41) 

(3.42) 

having the usual oscillatory behaviour, the bounds being given by appropriate 
roots of the fifth-degree polynomial 9,(2) = 0, one of which is of course zero, 
corresponding to the initial conditions. 

Continuing to fifth-harmonic near-resonance, with u(l) = A eiei + iBeie5 + [*I, 
then with 6 = O(e4), the sequence of problems to O(e2)  is similar. To O(e3), we find 
that the O(1) amplitudes are not dependent on X,, whence a particular integral 
for d4) leads at  the next order, e4, to amplitude equations of the form 

UAAX4 = iA[clllA2A*2+cl,2AA*BB* + c ~ ~ ~ B ~ B * ~ ]  +id5A*4BeciN5”4 

UEBx4 = iB[c,,,A2A*2+~212AA*BB* + c , , , B ~ B * ~ ]  +id,Ase+iNsX4, 

t For gravity waves, certain triads of waves can produce a cubic resonance. The experi- 
ments of Longuet-Higgins & Smith (1966) and of McGoldrick, Phillips, Huang & Hodgson 
(1966) indicate quite clearly that the maximum energy transfer occurs slightly ‘ off-tune’, 
and was accounted for explicitly by those authors. 

)] (3.43) 

47-2 
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with obvious reduction to (dZ/dX# = g5(2), a sixth-degree polynomial in 2. 
The real constants ciik arise from quintic self and mutual interactions and are 
responsible for further Poincarh shifts of order €4. 

The pattern that has emerged is clear. For nth harmonic resonance, there is a 
band of frequencies about w, with bandwidth 0(en-l)  for which the finalresolubion 
of the O( 1) wave field is given by solutions of (dZ/dX,-l)2 = 9,(2), an (n + i ) th  
degree polynomial, with PoincarB detunings arising at each even order. The 
solubions are almost always periodic. The period of energy interchange, or inter- 
action distance, is of order IC-l(w) el-,; that is, the energy transfer rate is progres- 
sively weaker as the order of the interaction increases. Finally, we state the follow- 
ing theorem : In a conservative, weakly nonlinear one-dimensional, dispersive wave 
system, with dispersion relation w = f ( k )  admitting a discrete sequence of frequencies 
which are solutions of nw, = f (nk )  for n = 2,3,  . . . , a single wave with frequency arbi- 
trarily close to w, can almost never exist as a steady state, but must share its energy 
with a wave of frequency arbitrarily close to nw, which i s  capable of growth to the 
same order as the fundamental at the expense of the fundamental component itself. 
That is, while this wave represents a theoretically possible state of equilibrium 
to lowest order, it is in fact dynamically unstable. The exceptions are those coin- 
cidental cases like (3.36) for which the interaction coefficient vanishes a b  some 
order. The result is capable of generalization to propagation in more than one 
direction, with the appropriate choice of a resonance condition. That, indeed, is 
what the resonant interaction theories of the last decade are all about. 

4. Some experimental observations 
In this section, we shall consider some (certainly not all) of the implications of 

the analysis of the last section in the neighbourhood of harmonic resonances. 
As pointed out in the second section, one-dimensional trains of capillary-gravity 
waves, which are weakly nonlinear, do have a dispersion relation with harmonic 
resonant solutions. The analogy is not exact, however, since the model equation 
provides no mechanism for dissipation whereas real water waves are well known 
t o  be weakly dissipative if the wave Reynolds number R,,, = w/vk2 is sufficiently 
large (v is the kinematic viscosity). We shall nob provide as detailed an accounting 
for the dissipative effects as has been done in our earlier ( i970a)  experiments on 
exact second harmonic resonance, but shall make adjustments of our interpreta- 
tion of some of the observations presented here, based on Dhe intuition gathered 
and strengthened in those earlier experiments. 

The tank in which the experiments were performed is rectangular, withlength 
301 em and width 62.7 em filled with ordinary tap water to a depth of 41.0 em, 
effectively placing the waves in infinitely deep water. Waves are created near one 
end by oscillating vertically a triangular shaped plunger which extends the 
width of the tank, and is about 5 ern high. The front face, inclined forward at an 
angle of about 20" wibh the vertical, is faced with a smooth thin sheeb of glass 
which, if kept clean, prevents meniscus reversals from occurring, eliminating 
unwanted disturbances in the immediate vicinity of the wave maker. 

The plunger is oscillated vertically by an electro-magnetic servo-mechanism 
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consisting of the innards of a powerful high fidelity loud-speaker and a, position- 
to-voltage transducer all driven by a purely sinusoidal electronic signal. A com- 
plicated comparison and feed-back circuit ensures that the motion of the plunger 
is a faithful replica of the driving signal, and has no spurious harmonics of the 
kind introduced by mechanical linkages; the amplitude and frequency stability 
is typically better than one part in lo5. There is an absorbing beach at  the far end 
of the tank. 

Measurements of the wave field at  any point in the tank are made with a capa- 
citance-type wave detector having a remarkably linear response. With no more 
than the simplest attention to technique, we can routinely detect waves of 
amplitude 10-3mm.t 

In all of the experiments, the wave maker was driven with a purely sinusoidal 
motion with frequency in the appropriate neighbourhood of the selective reson- 
ances. The resulting wave form close to the plunger was as close as we could get 
to a monochromatic Fourier component. That is, the initial conditions are excel- 
lently approximated by B(0) = 0, which is appropriate to the analysis presented 
in the last; section. 

Returning now to dimensional variables, recall that the dispersion relation 
(2 .5 ) ,  d = gk+yk3 ,  has discrete resonant solutions given by 

k, = (g/ny)*, uk = (g3/y)* (n + ~ ) / d .  (4.1) 

The phase speed is given by 

ck = (ngy)* E(n + 1)lnl 
for both harmonics, and the group speeds U, and U, for the components are 

Ua, = c,(n+ 3)/2(n+ i), UB,& = c,(3n+ 1) /2(n+ 1). (4.3) 

For near-resonance we write w = w,(l+S), then with 6 = 0(sn-l) the detuning 
exponent in the nth order amplitude equations becomes (cf. (3.8) et seq.) 

4 n(n2-1) 
= 4 ( 1 )  ny  ( 3 n + I ) ( n + 3 )  8, (4.4) 

and the ratio of the O( 1) phase speed of the harmonic to that of the fundamental 

4(n2 - 1) 
is, to lowest order, 

6. c ~ / c ~  = + (3n + 1) (n + 3) (4.5) 

That is, if the frequency of the fundamental is slightly greater than the resonant 
frequency w,, then S > 0, and the phase speed of the harmonic is slightly greater 
than that of the fundamental,$ and vice versa. We shall provide experimental 
evidence for this subsequently. 

t We can in fact see (electronically) the evaporation from the free surface. This of course 
was compensated for by dribbling in fresh water. 
1 This is why (in the neighbourhood of resonance) the analysis cannot be reduced to a 

steady state by the usual artifice of transforming to a uniformly translating co-ordinate 
system. There is not even a steady lowest order basic state. 
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The sequence of resonant frequencies depends on the value of the surface 
tension coefficient y. It is known that the effective value of this coefficient for a 
continuously deforming surface which, moreover, has adsorbed a surface film 
is not identical with the static values measured with a tensiometer. Further, 
the film greatly changes the damping characteristics ofthe waves, and the surface 
in time approaches closely the inextensible (or immobile) surface investigated by 
Lamb,? with the attendant more rapid wave damping for all but the shortest 
of capillary waves. For successively higher order resonances, the growth rate 
decreases by successive powers of the maximum wave slope E = UK,  and con- 
currently the wavenumber of the harmonic component increases, with inevitable 
increase of the dissipative effects. While for our second harmonic resonance 
experiments an 'equilibrium dirtiness' approach was tolerable, the competition 
between resonant growth and viscous dissipation requires for their distinction a 
relatively clean surface. No unduly elaborate precautions were felt worthwhile, 
but the surface film was flushed over a weir every 20min or so. This periodic 
flushing reduced the dissipation slightly (measured by eye) and ensured that most 
of the experiments were performed on a somewhat fresh surface. The surface 
tension coefficient adopted was that appropriate to the measured temperature 
of the water, obtainable from standard reference works.$ 

The first set of experiments were performed in the neighbourhood of third 
harmonic resonance. It is clear from the analysis that the tuning for maximum 
response is not known a priori, since the detuning effect of the self and mutual 
interactions, characterized by the constants cij of the last section, are not known 
for capillary-gravity waves. For a temperature of 22 "C, the period corresponding 
t o  w3 is T3 = 119.25 ms, and so a band of frequencies in the neighbourhood of T3 
was investigated to determine the response in the neighbourhood of resonance. 
Now as the frequency of the plunger is changed, the wavenumber of the funda- 
mental is changed also. The small parameter E of the theory is the maximum slope 
of the wave, taken to be that of the fundamental measured a t  (or close to) the 
wave maker, ak, say. In  order that E remain constant as the wave maker period 
is varied, the amplitude of the fundamental was monitored with a wave probe 
placed about IOcm from the wave maker, and adjusted so that the slope was 
indeed a constant (this procedure is followed in all of the experiments). For the 
experimental results of figure 4, the constant slope was maintained a t  ak, = 0.059, 
to which corresponds a fundamental amplitude of about 0.28 mm a t  a period of 
119.25ms (T3).  For a range of periods close to this, the amplitude of the third 
harmonic was measured with a second wave probe about 40 cm from the wave 
ma,ker with the aid of a sharp constant bandwidth (1.0 Hz) electronic band-pass 
filter (Quan-Tech model 304-R). Figure 4 is the result of this experiment. The 
ordinate s3 is the ratio of the slope of the third harmonic to the maximum slope 
of the fundamental, s3 = 3bk,/ak3, which a t  resonance is an O(1) quantity; the 
abscissa is the actual wave maker period in ms. The maximum steepness ratio 

t See Lamb (1932, $351). 
1 See, for instance, Handbook of Chemistry and Physics, 46th edn. (1965-6). In particu- 

lar we used the formula y = (75.77-0.15227) (crn3s9), 15" < T <25". Spot checks with a 
tensiometer indicate that this is within a few tenths of a (em3 s - ~ )  of the measured value. 
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FIGURE 4. Measured amplitude response in the neighbourhoog of third harmonic resonance. 
S3 is the ratio of the steepness of the third harmonic measured 40 ern from the wave maker to 
the steepness of the fundamental near the wave maker. 
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FIGURE 5 .  Measurements of the fundamental amplitude 120cm from the wave maker, 
showing a cumulative effects of interaction and dissipation over the length of propagation. 
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observed is 0.5 and occurs at  a period slightly different from that predicted by 
the O( 1) dispersion relation, as was anticipated. This measured response curve is 
not indicative of the absolute maximum response determined as in figure 3. 
since on the one hand we do not know in advance where (spatially) the third 
harmonic attains its maximum value, which depends of course on the amount 
of detuning. 

On the other hand, however, for these experiments, the real viscous dissipa- 
tion renders this comparison irrelevant. What is actually observed is the following 
sequence of events. As the almost pure fundamental wave leaves the wave maker, 
it loses its energy by two mechanisms: first, ib begins to transfer energy into its 
third harmonic, which grows with distance; and second, it loses energy through 
dissipation. The viscous decrease of amplitude weakens the interaction, whence 
the growth rate of the third harmonic. The harmonic ripples themselves tend to 
be attenuated by the viscous dissipation, but to a greater degree than the funda- 
mental. Ultimately, there is a point where the energy input to the ripplesfrom the 
progressively weakening interaction is exactly balanced by their own viscous 
energy drain, after which both components decay and are ultimately extinguished. 
This same sequence of events was observed and quantified in our earlier experi- 
ments on second harmonic resonance (compare in particular figures 2 and 5 of 
that work), and is doubtless the situation here. What figure 4 does show clearly, 
though, is the relative strength of the interaction viewed in light of these two 
mechanisms in terms of the total growth of the resonant component over a 
$xed distance, and selectivity of the resonant tuning viewed in light of the degra- 
dation of the response for frequencies in the neighbourhood of the slightly shifted 
maximum response frequency, which occurs here a t  117.0 ms period. 

We may go further. We may measure the amplitude of the fundamental at a 
distance far in excess of the point where the interaction becomes dominated by 
dissipation. From this point onward the ripples will decay at  an increasingly 
greater rate, being progressively deprived of their resonant source. Figure 5 
shows a measurement of the fundamental component 120 cm from the source, 
as a function of the period of the wave maker. The third harmonic is virtually 
undetectable here; it has come and gone. The light sloping line in the figure 
represents the amplitude that the wave would have were there no nonlinear 
interaction, but solely viscous dissipation with logarithmic decrement 2vk21UA 
cm-l, where again it is the maximum slope near the plunger e which is held con- 
stant. The actual measurements show a deficit from this value and the maximum 
deficit occurs, of course, where the interaction is the strongest, at  T = 117.0 ms. 
The difference between the light line and the measurements is a measure of the 
total amount of resonant energy transfer from the fundamental into the third 
harmonic, integrated over the path length of the propagation, which is as clear 
an indication of the strength of the resonance as is the constant distance response 
of figure 4. 

Before turning to the next sequence of experiments, it is worthwhile to 
look at  the spectral content of the wave form near resonance. Figure 6 shows such 
a determination at  maximum response measured 40cm from the source. The 
ordinate is the ratio of the maximum slope of the individual harmonics to that 
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FIGURE 6. Amplitude spectrum a t  maximum third harmonic response. 8, is the ratio of the 
steepness of the nth harmonic to the local steepness of the fundamental. 
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I ~ I G U R E  7. Measured amplitude response in the neighbourhood of fourth 
harmonic resonance. 
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FIGURE 8. Measured amplitude response in the neighbourhood of 
sixth harmonic resonance. 

of the fundamental measured now at the same point. The slope of the third 
harmonic is 83 % that of the local fundamental; the other components are con- 
siderably smaller. 

Turning brieflyto fourth harmonic resonance, a t  a water temperature of 20.8 "C, 
the solution of the resonance condition gives, corresponding to 04, a period 
T, = 132.43ms. Again, in the neighbourhood of this frequency, a constant-€ 
response curve has been measured with a probe again a t  40 em. The fundamental 
amplitude at T4 near the plunger was 0-5 mm, to  which corresponds a maximum 
slope ak, = 0.092, slightly larger than for the previous experiment. Figure 7 
is the measured response curve. The peak response occurs slightily off the pre- 
dicted O(1) resonance, of course, and the maximum response X, is about 0.30, 
which is somewhat less than for third harmonic resonance. But this is expected 
since this interaction is weaker than the preceding while the measurements were 
made a t  the same location. Integrated decay measurements and spectral content 
(with fourbh harmonic predominant) are similar to figures 5 and 6 and need not be 
presented here. 

Continuing the experiments to sixth harmonic resonance, we have for this 
case ah, a maximum of 0.15 for which the fundamental measured at the wave 
maker had amplitude 0.98 mm. Figure 8 is the measured response, again at  40 om 
from the source, with no further dissimilarities from the other responses. The 
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maximum response is naturally smaller than before, which is expected. Nonethe- 
less, in spite of the fact that the nonlinear terms responsible for this interaction 
are of order c5, with corresponding reduction in energy transfer rates, the sixth 
harmonic emerges a t  resonance as an O( 1) quantity. 

We shall present just one further experimental observation which was promised 
at the beginning of this section. It is explicit from (4.5) that the phase speeds 
of the two harmonic components are not identical t o  lowest order in 6 except for 
S = 0, corresponding to the satisfaction of the O( 1) resonance condition. A per- 
haps unnecessarily elaborate, but nonetheless convincingly satisfying, graphical 
demonstration of this fact can be shown. Figure 9 (plate 2 )  is a single photograph 
consisting of seven separate traces on an oscilloscope. The sweeping rate of the 
oscilloscope has been adjusted to display almost exactly two periods of wave 
forms. The period of the wave maker is longer than that required for sixth 
harmonic resonance (T,) by 4.0ms. That is, the frequency is less than w,, and the 
detuning is characterized by 6 - 0.018. The wave forms displayed are synthe- 
sized in the following way. The actual signal from the wave probe is passed 
separately through two sharp band-pass filters, the first of which exbracts solely 
the fundamental frequency and the other, solely the sixth harmonic. These 
signals are added together after suitable rescaling to  produce a pleasing rippled 
pattern. The topmost trace of the picture, which is initiated by a zero-crossing 
of the filtered fundamental, is written on the oscilloscope which stores the traces 
as a bright line (for several hours). Then the wave probe is moved 1-0 ern farther 
away from the source, the d.c. level of the oscilloscope trace is moved downward 
by a known amount, and the second trace is then written on the oscilloscope, 
again triggered by the same phase point of the filtered fundamental, viz. the 
zero-crossing. The remaining five traces are written by the same procedure: 
physical displacement of the probe by 1-0 em followed by level displacement and 
constant; phase point triggering. What is displayed, then, in this photograph is 
the phase of the sixth harmonic wave relative to the fundamental as a function of 
distance in the direction of propagation. If the harmonic has a phase speed less 
than the fundamental, the ripple pattern should be delayed relatively with 
increasing distance: that is, in the frame of reference of the photograph, the 
rippling should appear to propagate to the right. That it indeed does is quite clear 
from the photograph, particularly when viewed a t  glancing incidence from below. 
It is a simple matter to determine the relative phase speed. For this determination 
the ratio of the speed of the harmonic to that of the fundamental is 

cs/ca = 0.96. 

From ( 4 4 ,  c,/cs = 1 +%S = 0.98. 

The agreement is noteworthy. 
There are direct ways to measure the individual phase speeds separately, 

by a Lissajous figure method. The results, while inherently more accurate, are 
less demonstrative of the conclusion. We shall not present here similar results 
which do show, for positive 6, that the ratio (4.5) is in facb greater than unity. 

We have not presented any detailed measurements concerning the spatial 
growth and decay of the interacting components. While we do have many 
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measurements of such quantities near and far from resonance, we shall defer 
them in favour of a description of the process based on visual observation. The 
rippling is most easily observed for the higher order resonances because of the 
difference in length scales of the interacting components. In  all cases, however, 
the rippling can be seen byeye. Not too close to resonance, the rippling is relatively 
weak and its maximum occurrence is relatively far from the source. As the fre- 
quency of the wave maker is adjusted closer and closer to resonance, the rippling 
becomes more and more pronounced and the location of the visual maximum of 
the ripples moves closer to the source, being closest of course when the frequency 
corresponds to one of the maxima of the response diagrams presented earlier. 
This is indicative of the selectivity of the interactions, and in agreement with the 
analysis of the model problem. Again, if we maintain the source a t  a constant 
frequency and vary the amplitude of the fundamental by increasing the stroke, 
we observe also both that the maximum rippling increases and that the location 
of this maximum moves towards the source. This too is in agreement with our 
ideas concerning the competition between the effects of resonant ripple growth 
(which increases with amplitude of the fundamental at its expense) and effects 
of dissipation. 

The shallow water rippling experiments of Kim & Hanratty (1971) deserve 
further comment here, since their conclusions about the generating mechanism 
are different from those of the present paper. For third and fourth harmonic 
generation, we propose cubic and quarbic nonlinear interactions respectively, 
while they explain the harmonic distortion with quadratic interactions (i.e. O(e) 
in our terminology). 

For the O(1) wave field, Kim & Hanratty write 

N 
5 =  C Aaeiae+[*] ( K & H 2 )  

a=O 

with a corresponding expression for the velocity potential, and make no a priori 
assumptions about the magnitudes of the amplitudes A,. For the remainder of 
their paper, they concentrate on the first four harmonic modes (N = 4). For 
infinitely deep water it is clear from our dispersion relation (2 .5)  that not all four 
modes can satisfy the O( 1) (i.e. linear) equations simultaneously, but in fact at  
most two of the modes can be O( 1) depending on which resonance is being investi- 
gated; the remaining two amplitudes must be a t  most O(e),  and are to be deter- 
mined as particular integrals of the O ( E )  dynamic equations once the secularity 
has been removed. 

For shallow water, the situation should be different. The dispersion relation 
(in dimensional terms) is 

w = { (gk  + yk3) tanh kH}$, 

which involves a ratio of two length scales. If L is a wavelength scale (=  2n/k)  
and we call A = H / L ,  then the dispersion relation for small A is 

(4.6) 
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Now our E is the ratio of an amplitude to a wavelength, and the dynamical prob- 
lem posed in $ 2  involves two independent small parameters. If A Q 1 then the 
waves in addition to being weakly nonlinear ( E  < 1) are weakly dispersive. It 
is only for small A that a wave field of the form (K & H 2) can satisfy the O( 1) 
problem. Further, if the fluid depth is close to (3ylg)i  (about 0.48 cm for water), 
then writing H 2  = 3y(l +A,)/g, (4.6) becomes, for small A,, 

(4.7) 

As A, -+ 0, the waves are even more weakly dispersive, since the correction to the 
dispersion relation is at most O(A4), and the O(1) wave field used by Kim & 
Hanratty would be even more appropriate: they do comment on the weakness of 
the dispersion in this particular limit. 

Mei & Unliiata (1972) have performed similar experiments on harmonic genera- 
tion on a much larger physical scale, where the fluid depth is much larger than 
(3y/g)*. The effects of surface tension are negligible. In  their analysis they choose 
the scaling EA-2 = O(l ) , t  which balances the amplitude dispersion effects with 
those of frequency dispersion (the scaling is that for solitary waves). For the 
dynamical equations, they choose the more appropriate Boussinesq water wave 
equations dictated by the choice of scaling. With tihis model they show that 
second and third harmonic generation can be produced by a quadratic O(E) 
interaction and provide experimental verification of their analytical results. 

It is quite clear from the work of Mei & Unluata (and its possible extension 
to higher harmonic generation) that the harmonics higher than the second can 
indeed be produced by a quadratic interaction: it is necessary that the waves 
be weakly dispersive in the sense described above. The essential difference 
between the work of the above pairs of authors and that described in this paper is 
that our model (and capillary-gravity waves on deep water) are fully dispersive 
with the consequence that resonanti generation is a result of nth order interactions, 
as we have shown in the preceding section. 

5. Further comments and summary 
While it is true that the analysis of $ 3  can formally be carried to any desired 

order, there are several reasons to doubt the applicability of such a procedure 
to the case of real water waves, at least as n becomes sufficiently large. First, 
the inevitable dissipative effects become increasingly more important as the 
wavelength of the resonant ripples diminishes. These effects have been treated 
only heuristically here, for obvious simplicity. More important, however, is the 
fact that, with increasing 12, the ratio of the wavelength of the ripples to that of 
the fundamental responsible for their production becomes increasingly small 
according to k(w)/k(nw) = A = lln. In this resonance calculation, as well as in 
many others, the tacii, assumption is ordinarily made that the wavelengths 
(whence frequencies) are all of the same order, with the result that the weakly 

t Their E is amplitudeldepth. 
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nonlinear problem depends solely on a single small parameter, 8, say, which 
physically is a measure of the nonlinearity produced by finite amplitude effects. 
But for large n, A itself is another small parameter, and the actual problem 
depends ultimately on two small parameters, E and A. In  terms of a parametric 
( E ,  A) space, we have solved the problem for the asymptotic limit €/A = o(1) as 
E - f O .  

The rippling problems analysed by Longuet-Higgins (1963) and later by 
Crapper (1970) depend crucially on the assumption that A is small, so that the 
ripples can be treated as a perturbation on some given basic state, which they 
take to be the steady gravifiy wave itself. That is, if a typical horizontal length 
scale of the ripples is characterized by their wavelength I ,  and a horizontal length 
scale of the gravity wave is taken to be its wavelength L, then for l/L small 
(our A), the amplitude of the ripples, characterized by a, is taken to be depen- 
dent on a long space scale X given by X = xb/L = Ax, or a = a ( X ) .  The ampli- 
tude of the gravity wave A is taken to be independent of any horizontal length 
scale (viz. A = constant), but the phase function belonging to the gravity wave 
is assumed ab initio to be a function of Ax = X .  This horizontal spatial scaling is 
purely kinematical. Their approximation of the dynamical equations implies 
that a relative measure of the dynamical nonlinearities is, as usual, e = AIL. 
Then under the supposition that e and A are of the same order they carry on. 
Their results show that for bhis choice of parameter ranges, the amplitude and 
phase of the ripples, both slowly varying over the scale of the long wave, are such 
that the ripples are confined for the most part to the forward face of the wave 
(ahead of the crest in the propagation direction), and the amplitude of the ripples 
decreases with distance from the crest; the wavelength of the ripples also 
decreases with distance from the crest. The magnitude of the amplitude and 
wavelength variation is shown to be proportional to the steepness of the gravity 
wave. Finally, they point out that their analyses (in which €/A = O(1)) breaks 
down as the wavelength of the gravity wave diminishes, i.e. as A becomes large. 
But this is precisely where our present analysis is valid, and our analysis becomes 
invalid when, for fixed E ,  A --f e. In this sense, the respective analyses are com- 
plimentjary and not competitive. It is no wonder that the observations men- 
tioned in § 1 were not in agreement with the earlier theories ! 

The experimental observations of Cox ( 1958) mentioned previously deserve 
further comment. It is clear now that they belong to the parameter range of the 
present paper. Cox performed his investigation in a combination wave tank/ 
wind tunnel, and made note of the fact that waves created by a wave maker 
alone operating at  about 6.6 c/s without the wind blowing created a good deal of 
rippling. With the addition of a wind blowing in the direction of the waves, the 
rippling was augmented. This now is easy to explain. The windless ripples were 
created by the resonance mechanism. The action of the wind is to feed energy into 
the longer waves maintaining them against the drain from both resonant transfer 
and viscous dissipation, and energy input manifests itself in the augmentation of 
the ripples with concurrent extension of their region of occurrence. It is conceiv- 
able that there is a wind speed for which the energy input to the long waves is 
precisely balanced by the resonant and viscous drain, whichimplies that the long 
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wave serves as a catalyst for the indirect generation of ripples by the wind. 
Moreover, the effect of the rippling for any wind speed is to inhibit the onset of 
breaking of the long waves. This conclusion has already been drawn by Longuet- 
Higgins and by Crapper, but we now have a method to quantify it further, 
since the interaction coefficients are (in principle) calculable. On the other 
hand, the algebraic complexities are so severe that; we suggest that the phen- 
omenon be should investigated in more experimental detail. 
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FIGURE 1. Fundamental wave with harmonic ripples. The wave maker frequency is 6.6 cjs. 
Note that the rippling is not confined to the front face, but appears all over the longer wave. 
Propagation is from right to left. 
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FIUURE 9. Reconstructed wave form near sixth harmonic resonance for measuring 
the relative phase speed of the interacting components. 
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